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The D1Q3 lattice Boltzmann (LB) shallow water equation is analyzed in detail and com-
pared with other numerical schemes. Analytical results are derived and used to discuss
the accuracy and stability of the model. We show how such D1Q3 LB models for canal
reaches may be easily coupled with various hydraulic interconnection structures to build
models of complex irrigation networks.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

Generally, an irrigation network consists of a primary open-air canal connected to secondary canals and/or pressurized
network of water distribution. Canals consist of several long reaches (usually several kilometers long) separated by engineer-
ing works (like sliding gates for instance) [8,4]. The open channel hydraulic part is the most complex one. Its dynamical
behavior is characterized by important time delays (due to water transport), wave superposition effects and strong non-lin-
earities (mainly around the works). The overall network has to be carefully managed in order to supply the various water
flow demands without violating strict water level constraints at several places along the reaches and near the hydraulic
works. This complex control and optimization problem requires efficient and reliable numerical algorithms to describe
the open-air hydrodynamics.

Within the long reaches with uniform sections, 1D shallow water model are usually used successfully, whereas 2D/3D
models are often required to describe non-linear turbulent flows as well as important erosion/sedimentation effects near
the gates. Recently we have proposed a bi-fluid lattice Boltzmann (LB) model that describes the flow near a gate, with or
without sediment transport and erosion [14], fully resolving all the components of the velocity flow. However, this detailed
model is computationally demanding and should only be used in the regions where the vertical component of the flow veloc-
ity plays an essential role.

In this paper, we use a lattice Boltzmann (LB) approach to solve the 1D shallow water (SW) equation and its coupling with
other models. Whereas 2D LB-SW models have been considered in several papers [16,5,22], the 1D model is – to our knowl-
edge – only investigated in one article by Frandsen [6].
. All rights reserved.
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In what follows we present a detailed analytical discussion of the accuracy and stability of the 1D model, as well as a com-
parison with other time-dependent numerical solvers. We show that the LB-SW model is accurate, fast and rather stable. We
also consider the coupling between several 1D models separated by gates whose behaviors are described by a phenomeno-
logical equation. More advanced coupling will be discussed briefly and described in a forthcoming publication.

2. The shallow water equation

2.1. Governing equations

We consider here the water flow in a rectangular open channel with slope, I, and width, B, as represented in (Fig. 1). The
flow and level dynamics of water in such a channel is usually modelled by the shallow water equations which are derived
from the conservation laws of mass and momentum, using some assumptions on the flow. These assumptions are that the
slope is small, the length of the reach is assumed sufficiently large compared to the water level height, the pressure is as-
sumed to be hydrostatic and the fluid is incompressible. Finally, internal viscosity effects are neglected. The Saint-Venant
(or shallow water) equations are then
@thþ @xðhuÞ ¼ 0 ð1Þ

@tðhuÞ þ @x
1
2

gh2 þ hu2
� �

¼ F ð2Þ
where h denotes the water depth, u the depth-averaged horizontal velocity of the flow, and g the gravitational acceleration.
The force term, F = gh(I � J), accounts for the bed slope, I, and the bed friction, J, where I = @ hb/@x with hb the bed height and J
is modelled with the classical Manning formula [8]:
J ¼ n2u2

Bh
Bþ2h

� �4=3 ð3Þ
with n the Manning coefficient and B the width of the canal.

2.2. Lattice Boltzmann model

The lattice Boltzmann (LB) method has proven to be a powerful numerical tool to simulate the fluid flows and other phys-
ical phenomena [15,1,2,20].

In this method, one considers the dynamics of idealized fluid particles on a lattice. The key quantities in the LB model are
the density distributions, fi(x,t), denoting the density of particles entering site x at discrete time t with velocity vi. The vi are
chosen to match the spatial lattice so that, in one time step, Dt, particle with velocity, vi, arrives at the lattice point at x + viDt.
Usually a LB model uses only a small number of velocities, vi.

One assumes that the particles entering the same site at the same time with density, f in
i ðx; tÞ, collide. As a consequence, a

new distribution, f out
i ðx; tÞ, of particles results. Then, during the next time step, t + Dt, the particles emerging from this col-

lision phase move to a new lattice site, determined by their new speeds. Therefore, the dynamics of a LBM consists of the
alternation of collision and streaming phases
Collision : f out
i ðx; tÞ ¼ f in

i ðx; tÞ þXiðf inÞ
Streaming : f in

i ðxþ v iDt; t þ DtÞ ¼ f out
i ðx; tÞ

ð4Þ
where fin denotes the vector of all f in
i ;Dx is the lattice spacing and Dt is the time step. Xi is the collision operator, which is

commonly defined by the Bhatnagar–Gross–Krook (BGK) model [15]
Xiðf inÞ ¼ 1
s

f eq
i � f in

i

� �
ð5Þ
where s is a relaxation time constant and the f eq
i are the so-called equilibrium distribution functions. f eq

i depend on the phys-
ical process to be described. We shall specify its form below, for the shallow water model.
Fig. 1. Longitudinal (left) and lateral (right) views of an open rectangular hydraulic channel.
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Eqs. (4) and (5) may be combined to obtain the evolution equation
fiðxþ v iDt; t þ DtÞ ¼ fiðx; tÞ þ
1
s
ðf eq

i � fiÞ ð6Þ
where f stands for fin.
When an external force, F, exists, the lattice Boltzmann equations are modified. Several versions have been proposed in

the literature [18,10,9,11]. For a constant force, F, the following expression can be used:
fiðxþ v iDt; t þ DtÞ ¼ fiðx; tÞ þ
1
s
ðf eq

i � fiÞ þwi
Dt
c2

s
v iF ð7Þ
where wi and cs are parameters that are determined by the geometry of the lattice and chosen to obtain isotropy for the
model.

In the present paper, we consider a 1D model for the water flow. A D1Q3 model geometry (one dimension and three
velocities) has been chosen with the notation of Fig. 2 in which v0 = 0, v1 = v, v2 = �v and v = Dx/Dt. In this model, the follow-
ing values are used for wi and c2

s ¼
P

i>0wiv2 :
w0 ¼
2
3
; w1 ¼ w2 ¼

1
6
; c2

s ¼
v2

3
ð8Þ
In order to recover the physics of the shallow water equations, the equilibrium distribution functions must satisfy the
following three conditions, expressing mass and momentum conservation, as well as the desired form of the momentum
tensor
X

i

f eq
i ¼ h ð9Þ

X
i

v if
eq
i ¼ hu ð10Þ

X
i

v2
i f eq

i ¼
1
2

gh2 þ hu2 � Peq ð11Þ
where h, the water level, and u, the velocity, are defined as:
h ¼
X

i

fi; hu ¼
X

i

v ifi ð12Þ
When Eqs. (9)–(11) hold, the equilibrium distribution functions are uniquely determined by the macroscopic variables h and
u. One gets
f eq
0 ¼ h� 1

2v2 gh2 � 1
v2 hu2

f eq
1 ¼

1
4v2 gh2 þ 1

2v huþ 1
2v2 hu2

f eq
2 ¼

1
4v2 gh2 � 1

2v huþ 1
2v2 hu2

ð13Þ
These equilibrium distribution functions will be used in the next section to show that the shallow water equations dynamics
may be recovered from the LB model. A dissipative contribution will be obtained that differs from that proposed in [22] but
agrees with the results of [5].

Finally, the force term will be evaluated using several methods. First we consider the centered-scheme proposed by Zhou
[22]. This scheme was shown be accurate up to the second-order in the space and time discretization steps [22] but our sim-
ulations show that this is not always the case. Zhou’s force model assumes an LB Eq. (7) with
Fi ¼ g�hi I � n2�ui

B�hi
Bþ2�hi

� �4=3

0
B@

1
CA ð14Þ
where �hi ¼ hðx;tÞþhðxþv iDtÞ
2 and �ui ¼ uðx;tÞþuðxþv iDtÞ

2 . Therefore a kind of mean force term is thus used, derived from the mean values
of the water levels and velocities at the current lattice point and at the ‘‘next” lattice point in direction i.

Unfortunately, Zhou’s expression for the force does not conserve mass locally. As shown below, second-order corrections
to the mass conservation laws are present, as well as a second-order correction to the momentum balance equation. There-
Fig. 2. Lattice Boltzmann D1Q3.
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fore we will also implement Guo’s force model [9], which is the standard way to add an external force in the LB method. It
will however change the relation (12) between hu and the f 0i s. The accuracy of Guo’s force will be shown to be first-order only
in an exact calculation.

Finally, we shall also consider a simplified Guo’s force model, which turns out to be easier to implement and more accu-
rate than the other two in our benchmarks.

2.3. Chapman–Enskog expansion

The hydrodynamic equations associated with the above LB model can be derived from a multiscale Chapman–Enskog
expansion. Such a procedure shows that the LB model recovers the continuity equation and the viscous Saint-Venant (shal-
low water) equations. Discrepancies are third order in Dt and Dx and in the dissipative term. In recent literature [22], the
viscous term is unfortunately incorrectly calculated. The correct form has been briefly indicated in an appendix of [5], omit-
ting the complete expression for LB case. For this reason, we give below a full derivation of the hydrodynamic equations. We
also give the explicit expression of the non-equilibrium part of the density distribution which, to the best of our knowledge,
has never been published for the shallow water LB model. Note however that in our derivation we do not consider the case
with the force term.

The multiscale Chapman–Enskog expansion method is described in detail in [2]. It contains several steps that are sum-
marized below:

(1) A Taylor expansion, up to second-order of the LB dynamics (6)
Dt@t fi þ v iDt@xfi þ
1
2

Dt2@2
t fi þ

1
2

v2
i Dt2@2

x fi þ v iDt2@x@tfi ¼
1
s

f eq
i � fi
� �

ð15Þ
(2) An expansion in a formal parameter � (usually interpreted as the Knudsen number) of the distribution functions
fi ¼ f eq
i þ �f

ð1Þ
i þ �2f ð2Þi þ . . . ð16Þ
(3) A multiscale analysis to separate the two time scales in the problem. Here we assume that the process is governed by a
fast convective scale and a slow dissipative scale. Therefore we express the spatial and temporal variables t and x in
terms of new variables t1, t2 and x1.
@t ¼ �@t1 þ �2@t2 ð17Þ
@x ¼ �@x1 ð18Þ
The multiscale approach gives a way to properly approximate the second order time derivative in (15).
(4) The first two moments of Eq. (15) are taken (sum over i and multiplication by vi and sum over i). The right-hand side

exactly vanishes at all order in �, due to the conservation laws. We obtain, for the convective scale
@t1 hþ @x1 ðhuÞ ¼ 0 ð19Þ
@t1 ðhuÞ þ @x1P

eq ¼ 0 ð20Þ
and, for the dissipative scale
@t2 hþ 1
2

Dt@2
t1

hþ 1
2

Dt@2
x1

Peq þ Dt@x1@t1 ðhuÞ ¼ 0 ð21Þ

@t2 ðhuÞ þ @x1P
ð1Þ þ 1

2
Dt@2

t1
ðhuÞ þ 1

2
Dt@2

x1
Seq þ Dt@x1@t1 P

eq ¼ 0 ð22Þ
Then, after some algebra (see [2]) the two scales can be recombined to give the hydrodynamic equations, at the scale x and t
@thþ @xðhuÞ ¼ 0 ð23Þ

@tðhuÞ þ @x Peq þ �Pð1Þ þ 1
2

Dt �@t1 P
eq þ @xSeq� �� 	

¼ 0 ð24Þ
where the quantities P and S are tensors defined as
P ¼
X

i

v2
i fi Peq ¼

X
i

v2
i f eq

i Pð1Þ ¼
X

i

v2
i f ð1Þi ð25Þ
and
S ¼
X

i

v3
i fi Seq ¼

X
i

v3
i f eq

i ð26Þ
We can recognize the continuity equation. But we see that Eq. (24) is not yet in the final form of a shallow water equation
because P(1) is unknown. To compute it we need to compute f(1).

(5) The non-equilibrium distribution f(1) can be obtained from the order Oð�Þ of Eq. (15)
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f ð1Þi ¼ �sDt @t1 f eq
i þ v i@x1 f eq

i


 �
ð27Þ
The time derivative can be expressed as
@t1 f ð0Þi ¼ @f ð0Þi

@h
@t1 hþ @f ð0Þi

@ðhuÞ @t1 ðhuÞ ð28Þ
because, in the Chapman–Enskog expansion, we assume that f depends on x and t only through the conserved quantities h
and hu. Then using Eqs. (19) and (20), we obtain
�f ð1Þi ¼ �sDt � @f eq
i

@h
@xðhuÞ � @f eq

i

@ðhuÞ @xP
eq þ v i@xf eq

i

� 	
ð29Þ
Using that
@xP
eq ¼ 2u@xðhuÞ þ ðgh� u2Þ@xh
we obtain the explicit expressions:
�f ð1Þ0 ¼ sDt 1� gh
v2 � 3

u2

v2

� �
@xðhuÞ þ 2

u2

v2 �
gh
v2

� �
u@xh

� 	

�f ð1Þ1 ¼ �1
2
�f ð1Þ0

�f ð1Þ2 ¼ �1
2
�f ð1Þ0 ð30Þ
Eq. (30) are important because they give the relations between the standard hydrodynamic quantities and the non-
equilibrium density distributions �f ð1Þi � fi � f eq

i . We see that the f(1)’s depend on the spatial derivatives of h and u. From these
equations, an initial condition fiðxÞ ¼ f eq

i þ �f
ð1Þ
i can be built properly out of given values for h(x),u(x),@xh and @x(hu).

(6) Finally the dissipative contribution of (24)
C ¼ �@x �Pð1Þ þ
1
2

Dt�@t1P
eq þ 1

2
Dt@xSeq

� 	
ð31Þ
can be computed from f(1). As above, we also replace �@t1 P
eq by ð@Peq=@hÞ@t1 hþ ð@Peq=@huÞ@t1 hu. After some algebra we

obtain that
C ¼ Dt s� 1
2

� �
@x
�@Peq

@h
@xhu� @P

eq

@hu
@xP

ð0Þ þ @xSeq
� 	

ð32Þ
Using the expressions
Peq ¼ 1
2

gh2 þ hu2 ¼ 1
2

gh2 þ 1
h
ðhuÞ2
and
@xSeq ¼ v2@xhu h@xu ¼ @xhu� u@xh
we obtain that
C ¼ Dt s� 1
2

� �
@x ðv2 � gh� 3u2Þ@xhuþ 2ðu2 � ghÞu@xh

 �

ð33Þ
From the above expression for C, it follows that the shallow water equations with dissipation, resulting from the LB dynam-
ics, are
@thþ @xhu ¼ 0 ð34Þ
and
@thuþ @xhu2 þ g@x
1
2

h2 ¼ v2Dt s� 1
2

� �
@x 1� gh

v2 � 3
u2

v2

� �
@xhuþ 2

u2

v2 �
gh
v2

� �
u@xh

� 	
ð35Þ
We observe that the shallow water equation associated with the LB model contains many contributions to the viscous terms,
whose physical relevance remains to be discussed. However, we will see below that the 1D LB model remains numerically
stable even when s is close to 1/2, provided the Froude number is not approaching 1. Therefore, the viscous contributions can
be made small and the LB model approximates the non-viscous shallow water equation.

Note also that in the limit of h ? 0 and u ? 0, we obtain the more standard viscous term
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C ¼ v2Dt s� 1
2

� �
@2

x hu
However, it has to be noticed that even in this limit, the viscosity
m0 ¼ v2Dt s� 1
2

� �
ð36Þ
is not at all the one pointed out in [22] which depends only on the lattice properties as Dtc2
s ðs� 1=2Þ. Here, from (8) we have

c2
s ¼ v2=3.

Our result (35) will be confirmed in Section 4 in which the real part of the eigenvalues of the linearized model will be
examined.
3. Analysis of the steady state with zero flow

In this section we derive an analytical solution of our discrete LB model when the external force term is present. To the
best of our knowledge, exact solutions of an LB model with a non-constant force term have not been published before.

In order to solve the LB dynamics exactly we have to consider the simple situation sketched in Fig. 3. A fluid is at rest in a
canal reach, with a free surface level which is horizontal. Therefore the solution to the problem is a water depth h(x) such
that h(x) + hb(x) = const for all x, where hb(x) is the bed height at location x. This simple benchmark gives a test of the accu-
racy of the way to add the external force to a LB model. We shall consider both Zhou’s and Guo’s methods. The result of this
analysis is that Zhou’s method solves the water profile to machine accuracy but no longer satisfies exactly the correct mass
and momentum balances.

3.1. Zhou’s expression for the force term

Zhou [22] proposed the following way to include the force term:
f0ðx; t þ DtÞ ¼ f0ðx; tÞ þ
1
s

f eq
0 � f0
� �

fiðxþ v iDt; t þ DtÞ ¼ fiðx; tÞ þ
1
s

f eq
i � fi
� �

þwi
Dt
c2

s
v iFi i – 0 ð37Þ
with
F1 ¼ F xþ Dx
2

� �
; F2 ¼ F x� Dx

2

� �
; wi

Dt
c2

s
¼ Dt

2v2 :
The water height, h, and water current, hu, are still given by
h ¼
X

i

fi ¼
X

i

f eq
i hu ¼

X
i

v ifi ¼
X

i

v if
eq
i

despite the additional force term. As a consequence, we have
X
i

f neq ¼
X

i

v if
neq
i ¼ 0: ð38Þ
For a fluid at rest, u = 0, and we have the additional relations:
f eq
1 ¼ f eq

2 � f eq ¼ 1
4v2 gh2
and
x

hb(x)

h(x)

x

hb(x)

h(x)

Two situations of a canal reach where u = 0 and h + hb = const is an exact solution. (Left) There is a net slope but two walls prevent flow motion. A
ational domain with the so-called half-way bounce back left and right boundary conditions is used. (Right) There is a local deformation of the bed
global slope. A periodic computational domain can be used.
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f eq
0 ¼ h� 1

2v2 gh2
Also, from the definition of hu, we have 0 ¼
P

iv ifi and thus f1 = f2. In the steady state, the LB equations give
f0ðxÞ ¼ f0ðxÞ þ
1
s

f eq
0 � f0
� �

:

Therefore
f0 ¼ f eq
0 ¼ h� 1

2v2 gh2
:

This implies that
f neq
0 ¼ f0 � f eq

0 ¼ 0
and thus, from (38) f neq
1 þ f neq

2 ¼ 0. Since for u = 0 we also have f neq
1 ¼ f neq

2 , we conclude that
f neq
1 ¼ f neq

2 ¼ 0 ð39Þ
Therefore, for the situation at rest, with Zhou’s external force, the density distribution functions are simply
f0 ¼ f eq
0 ¼ h� 1

2v2 gh2 f 1 ¼ f2 ¼
1

4v2 gh2 ð40Þ
With f = feq, the LB equation for i = 1 reads
f1ðxþ DxÞ ¼ f1ðxÞ þ
Dt
2v F xþ Dx

2

� �
ð41Þ
or, equivalently
f1ðxþ Dx=2Þ ¼ f1ðx� Dx=2Þ þ Dt
2v FðxÞ: ð42Þ
Using
f1 ¼ f2 ¼ f eq ¼ 1
4v2 gh2

;

we obtain
1
4v2 gh2 xþ Dx

2

� �
¼ 1

4v2 gh2 x� Dx
2

� �
þ Dt

2v FðxÞ: ð43Þ
Therefore, Zhou’s model imposes
g
2

h2 xþ Dx
2

� �
� h2 x� Dx

2

� �
Dx

¼ FðxÞ; ð44Þ
which is a second-order accurate discrete form of the steady shallow water Eq. (2) with u = 0
@x
g
2

h2 ¼ FðxÞ
The above two equations describe the situation of a fluid at rest in a container whose bottom is not flat. For the case we con-
sider here, the force, F, depends on the derivative @xhb(x) of the bed profile.

With F = �gh@xhb(x) and @x
g
2 h2 ¼ FðxÞ we clearly obtain @x(h + hb) = 0, i.e. h + hb = const. In the discrete case, Zhou defines
F xþ Dx
2

� �
¼ �g

hðxþ DxÞ þ hðxÞ
2

hbðxþ DxÞ � hbðxÞ
Dx

� �
ð45Þ
Then, with x- = x � Dx/2 and x+ = x + Dx/2 Eq. (44) becomes:
g
2

h2ðxþÞ � h2ðx�Þ
Dx

¼ �g
hðxþÞ þ hðx�Þ

2
hbðxþÞ � hbðx�Þ

Dx

� �
ð46Þ
Since
h2ðxþÞ � h2ðx�Þ ¼ ½hðxþÞ þ hðx�Þ�½hðxþÞ � hðx�Þ�;
the solution of this discrete equation is simply
hðxþÞ þ hbðxþÞ ¼ hðx�Þ þ hbðx�Þ ¼ const
Therefore, with Zhou’s force, the water profile, in the steady state with u = 0 is resolved correctly to machine accuracy.
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3.1.1. Mass and momentum balance equation
However, in Zhou’s model, the fact that F is not calculated at the same point x for i = 1 and i = 2, has the consequence that

(by taking the first moment of Eq. (37))
houtðxÞ ¼
X

i

f out
i ¼

X
i

f in
i þ

Dt
2v F xþ Dx

2

� �
� F x� Dx

2

� �� �
– hinðxÞ
and thus the mass is not exactly constant during the collision process. A Taylor expansion shows that this correction is
second-order in the lattice spacing, Dx,
Dt
2v F xþ Dx

2

� �
� F x� Dx

2

� �� �
¼ F 0ðxÞ ðDxÞ2

2v2
However, if we sum up hout(x) over all x, we recover exact mass conservation provided that FðLþ Dx
2 Þ ¼ F � Dx

2

� �
. On the other

hand, if for instance hb has a constant slope, there will be a net increase (or decrease) of mass during evolution. This effect is
easily observed in numerical simulations in which FðLþ Dx

2 Þ– F � Dx
2

� �
.

A similar analysis can be made for the momentum balance. By definition a force F acting during a time Dt will increase the
momentum by an amount Dj = FDt. Since the momentum is defined as j ¼

P
ifiv i, we have
FDt ¼
X

i

f out
i v i �

X
i

f in
i v i
By multiplying (37) by vi and summing over i, we get (remember that, by construction of f eq;
P

if
eq
i v i ¼ hu):
Dj ¼ v f out
1 � f out

2

� �
� v f in

1 � f in
2

� �
¼ 1

s
hu�

X
i

f in
i v i

 !
þ Dt

2
ðFðxþ Dx=2Þ þ Fðx� Dx=2ÞÞ: ð47Þ
With the definition, hu ¼ j ¼
P

if
in
i v i, we get the relation:
Dj ¼ Dt
2
ðFðxþ Dx=2Þ þ Fðx� Dx=2ÞÞ ¼ DtF þ Dt

ðDxÞ2

4
F 00:
Therefore, unless the second spatial derivative, F00(x), vanishes, the momentum balance is only correct to first-order in Dx.

3.2. Guo’s force model

Guo’s method [9] to add a body force is local and ensures exact mass conservation. Furthermore, the relation between the
momentum,

P
ifiv i, and the flow speed, u, is modified to impose an exact momentum balance.

In the case of a D1Q3 model, Guo’s force model reads:
f out
i ðx; tÞ ¼ fiðx; tÞ þ

1
s

f eq
i � fi
� �

þ ð1�wiÞAþ
Dt
c2

s
v iB

fiðxþ v iDt; t þ DtÞ ¼ f out
i ðx; tÞ; ð48Þ
where A and B have to be determined in terms of the actual body force applied to the system. Guo has shown that A and B
also depend of the fluid speed, u.

The above formulation guarantees a local mass conservation since
P

iwi ¼ 1 and
P

iv i ¼ 0
hout ¼
X

i

f out
i ¼

X
i

fi þ
1
s
X

i

ðf eq
i � fiÞ þ A

X
i

ð1�wiÞ þ
Dt
c2

s
B
X

i

v i ¼ hin
In order to obtain an exact solution to the LB equation, let us ignore for a while Guo’s results and let us assume that the A and
B are still unknown. This will allow us to also discuss the case of an added force term as in (7).

We still define j ¼
P

iv ifi as the momentum. In case of a body force F, the change of momentum during a time Dt is FDt
and from the first moment of the LB Eq. (48) we have:
FDt ¼
X

i

v if out
i �

X
i

v ifi ¼
1
s
X

i

v if
eq
i �

X
i

v ifi

 !
þ DtB:
Therefore the momentum balance requires sDtF ¼ hu�
P

iv ifi þ sDtB, because, by definition of f eq;
P

if
eq
i v i ¼ hu. This leads

to the following redefinition of the relation between the speed, u, and the momentum,
P

iv ifi:
hu ¼
X

i

v ifi þ sDtðF � BÞ: ð49Þ
Note at this stage that choosing B = F would preserve the usual definition of hu in terms of the first moment of the fi. But,
otherwise, this new relation may cause a new difficulty: from (3) we see that, in the shallow water model, F may be a non-
linear function of u. Therefore Eq. (49) is an implicit definition of u.
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Here we consider the case of a fluid at rest. When u = 0 we have already observed that f eq
1 ¼ f eq

2 ¼ f eq ¼ 1
4v2 gh2 and

f eq
0 ¼ h� 1

2v2 gh2. In addition, from the new definition of hu, we have 0 ¼
P

iv ifi þ sDtðF � BÞ and thus
f1 � f2 ¼ �sDt
v F � Bð Þ ð50Þ
Since f eq
1 ¼ f eq

2 the above relation also requires:
f neq
1 � f neq

2 ¼ �sDt
v ðF � BÞ ð51Þ
In a time-independent-state, the LB equation for i = 0 is:
f0ðxÞ ¼ f0ðxÞ þ
1
s

f eq
0 � f0
� �

� 1
3

A:
Therefore
f0 ¼ f eq
0 þ

s
3

A i:e: f neq
0 ¼ s

3
A ð52Þ
For the other directions, i = 1 or 2, the LB equations yield
f1ðxþ DxÞ ¼ f1ðxÞ þ
1
s
ðf eq � f1Þ þ

5
6

Aþ Dt
2v B ð53Þ
and
f2ðx� DxÞ ¼ f2ðxÞ þ
1
s
ðf eq � f2Þ þ

5
6

A� Dt
2v B: ð54Þ
By taking this last equation for x + Dx, we get
f2ðxÞ ¼ f2ðxþ DxÞ þ 1
s
ðf eqðxþ DxÞ � f2ðxþ DxÞÞ þ 5

6
Aðxþ DxÞ � Dt

2v Bðxþ DxÞ ð55Þ
Adding Eqs. (53) and (55), we get
f1 � f2 þ
1
s

f neq
2 � 5

6
Aþ Dt

2v B
� 	

xþDx

¼ f1 � f2 �
1
s

f neq
1 þ 5

6
Aþ Dt

2v B
� 	

x

From (50) and (51) we have f1 � f2 ¼ �s Dt
v ðF � BÞ and f neq

1 ¼ f neq
2 � s Dt

v ðF � BÞ. Therefore the above equation becomes
�sDt
v ðF � BÞ þ 1

s
f neq
2 � 5

6
Aþ Dt

2v B
� 	

xþDx

¼ �sDt
v ðF � BÞ � 1

s
f neq
2 þ Dt

v ðF � BÞ þ 5
6

Aþ Dt
2v B

� 	
x

ð56Þ
which we can finally write as
�s
Dt
v F þ Dt

v sþ 1
2

� �
Bþ 1

s f neq
2 � 5

6
A

� 	
xþDx
¼ ð1� sÞDt

v F � 1
2
� s

� �
Dt
v B� 1

s f neq
2 þ 5

6
A

� 	
x

ð57Þ
The structure of this equation is
Gþ 1
s

f neq
2

� 	
xþDx
¼ H � 1

s
f neq
2

� 	
x

with
G ¼ �sDt
v F þ Dt

v sþ 1
2

� �
B� 5

6
A H ¼ ð1� sÞDt

v F � 1
2
� s

� �
Dt
v Bþ 5

6
A

If we choose A and B such that H(x) = �G(x), we obtain
Gþ 1
s

f neq
2

� 	
xþDx
¼ � Gþ 1

s
f neq
2

� 	
x

which implies that
Gþ 1
s

f neq
2 ¼ 0 ð58Þ
The condition that H(x) = �G(x) requires:
�sDt
v F þ Dt

v sþ 1
2

� �
B� 5

6
A ¼ �ð1� sÞDt

v F þ 1
2
� s

� �
Dt
v B� 5

6
A
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and thus
B ¼ 1� 1
2s

� �
F or F � B ¼ 1

2s
F ð59Þ
This means that the definition (49) of u in terms of the fi’s becomes
hu ¼
X

i

v ifi þ
Dt
2

F ð60Þ
as previously obtained by Guo. Now, from (58) and B = (1 � 1/(2s))F we have
f neq
2 ¼ �sG ¼ Dt

4v F þ 5s
6

A ð61Þ
and, from (51)
f neq
1 ¼ � Dt

4v F þ 5s
6

A: ð62Þ
In order to determine A we use the condition
P

if
neq
i ¼ 0, resulting from the fact that

P
ifi ¼ h ¼

P
if

eq
i . From (52),

f neq
0 ¼ ðs=3ÞA,
s
3

A� Dt
4v F þ 5s

3
Aþ Dt

4v F ¼ 0
and thus
A ¼ 0 ð63Þ
Let us now compute the water profile h(x). Eq. (53), with A = 0 and B = (1 � 1/(2s))F is:
f1ðxþ DxÞ ¼ f1ðxÞ þ
Dt
2v F: ð64Þ
With f1 ¼ f eq
1 þ f neq

1 ¼ 1
4v2 gh2 � Dt

4v F, this equation becomes
1
4v2 gh2ðxþ DxÞ ¼ 1

4v2 gh2ðxÞ þ Dt
4v FðxÞ þ Fðxþ DxÞ½ � ð65Þ
that is
g
hðxþ DxÞ � hðxÞ

Dx
hðxþ DxÞ þ hðxÞ

2
¼ 1

2
FðxÞ þ Fðxþ DxÞ½ �: ð66Þ
This relation has to be compared with the corresponding continuous equation gh@xhb = F.
For a non-flat profile hb(x) of the canal bed, we have F = �gh@xhb. In the discrete case, let us define
FðxÞ ¼ �ghðxÞh0bðxÞ
where h0b is a discrete approximation of the x-derivative of hb. Eq. (66) then becomes:
hðxþ DxÞ � hðxÞ
Dx

¼ �h0bðxÞ � hðxþ DxÞh
0
bðxþ DxÞ � h0bðxÞ
hðxþ DxÞ þ hðxÞ : ð67Þ
If we take h0bðxÞ ¼ ½hbðxþ DxÞ � hbðxÞ�=Dx, we get
hðxþ DxÞ þ hbðxþ DxÞ ¼ hðxÞ þ hbðxÞ �
hðxþ DxÞ

hðxþ DxÞ þ hðxÞh
00
bðxÞðDxÞ2 ð68Þ
where h00bðxÞ is defined as h00bðxÞ ¼ ½h
0
bðxþ DxÞ � h0bðxÞ�=Dx. Therefore, unless h00b vanishes (which happens if the canal slope h0b is

constant), the exact solution h + hb = const with an error in OððDxÞ2Þ.
Therefore, Guo’s force solves the problem with only first-order accuracy. This contradicts the general idea that, in the LB

model, the addition of a body force does not alter the second-order accuracy of the scheme.
Note that here, we have no boundary conditions that reduce the accuracy but we have used a first-order accurate approx-

imation of @x hb. Therefore let us now consider a second-order accurate version of h0b
h0bðxÞ ¼
hbðxþ Dx=2Þ � hbðx� Dx=2Þ

Dx
Note that we still have h0bðxþ DxÞ � h0bðxÞ / @
2
x hbðxþ Dx=2ÞDx ¼ OðDxÞ

If we now define ~hðxÞ ¼ hðxþ Dx=2Þ, Eq. (67) becomes
~hðxþ Dx=2Þ þ hbðxþ Dx=2Þ ¼ ~hðx� Dx=2Þ þ hbðx� Dx=2Þ þ OððDxÞ2Þ ð69Þ
We again observe a departure from the constant profile of order (Dx)2.
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3.3. The constant force model

It is now interesting to investigate the constant force model as expressed in (7). In the formalism of this section, it cor-
responds to choosing
B ¼ F A ¼ 0
As a consequence, we obtain that, for u = 0, f neq
1 ¼ f neq

2 . With f eq
0 ¼ 0 (because A = 0), we further have f neq

1 þ f neq
2 ¼ 0. Thus

f neq
1 ¼ f neq

2 ¼ 0. Then Eq. (57) becomes
1
s

f neq
2 þ Dt

2v F
� 	

xþDx

¼ �1
s

f neq
2 þ Dt

2v F
� 	

x

ð70Þ
This no longer implies that both terms are zeros. Instead, the solution is
f neq
2 ðxþ DxÞ ¼ �f neq

2 ðxÞ � s Dt
2v ðFðxþ DxÞ � FðxÞÞ
Unless F = const, this contradicts the fact that f neq
2 ¼ 0. Therefore, for F = F(x), there is no steady state solution of the LB equa-

tion with u = 0. This shows that the constant force model makes no sense when the force is not constant.

4. The linearized model

In this section we give an exact time-dependent solution of the linearized D1Q3 LB shallow water model. We consider the
case of a periodic system, without external force, for which a discrete Fourier analysis can be done.

The spectrum of the evolution operator is investigated numerically for the full range of wave numbers k. In the hydrody-
namic limit k ? 0 an exact expression for the eigenvalues can be found, accurate to Oðk2Þ. The results of this section will con-
firm the validity of our Chapman–Enskog solution (35), demonstrate the second-order accuracy of the LB scheme and give
the stability region of the linearized model.

4.1. Linearization of the shallow water equation

We first derive the dispersion relation associated with Eqs. (34), (35) linearized around a constant height, h = h0, and con-
stant speed, u = u0. With h0 + Dh and u0 + Du, the linearized dissipative term (33) is
C ¼ v2Dt s� 1
2

� �
h0 ð1� /2 � 3/2Fr2Þ@2

xDuþ ð1� 3/2 � /2Fr2Þu0

h0
@2

xDh
� 	

ð71Þ
where
/ ¼
ffiffiffiffiffiffiffiffi
gh0

p
v Fr ¼ u0ffiffiffiffiffiffiffiffi

gh0

p ð72Þ
The quantity / is the ratio of the wave speed to the lattice speed and Fr is the Froude number. With these definitions we have
that the water speed in lattice units is
u0

v ¼ Fr/
We can now express the continuity and shallow water equation in a matrix form:
@t
Dh

Du

� �
¼
�u0 �h0

�g �u0

� �
@x

Dh

Du

� �
þ m0

0 0
r u0

h0
s

 !
@2

x

Dh

Du

� �
ð73Þ
where
m0 ¼ Dtv2 s� 1
2

� �
ð74Þ
and
r ¼ 1� 3/2 � /2Fr2 and s ¼ 1� /2 � 3/2Fr2: ð75Þ
We now consider a solution of the form
Dh

Du

� �
¼ expðixt þ ikxÞ

Dh0

Du0

� �
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and the matrix equation now reads
ix� ik
�u0 �h0

�g �u0

� �
þ m0k2 0 0

r u0
h0

s

 !" #
Dh0

Du0

� �
¼ 0
A solution exists only if
det
ixþ iku0 ikh0

ikg þ m0k2r u0
h0

ixþ iku0 þ m0sk2

 !
¼ 0
This yields an equation for x whose solution is
x� ¼
1
2
�ð2u0k� im0sk2Þ � 2k

ffiffiffiffiffiffiffiffi
gh0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ir

m0u0

gh0
k� m2

0s2

4gh0
k2

s" #
ð76Þ
We are interested in a solution accurate to order Oðk2Þ, which describes the hydrodynamical regime. Therefore we use the
first-order Taylor expansion of

ffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

¼ 1þ x=2 and we obtain, using expressions (72) and (75) for /, Fr, r and s
x� ¼ �u0 �
ffiffiffiffiffiffiffiffi
gh0

q� �
kþ i

m0

2
1� /2 � 3/2Fr2 � Fr 1� 3/2 � /2Fr2

� �h i
k2 ð77Þ
which is the dispersion relation for the shallow water equation derived from the Chapman–Enskog expansion of the LB mod-
el. With Dx = vDt, and m0 given by (36) we can get a dimensionless form of this dispersion relation
x�Dt ¼ �u0

v �
ffiffiffiffiffiffiffiffi
gh0

v2

r !
ðkDxÞ þ i

2
s� 1

2

� �
1� /2 � 3/2Fr2 � Fr 1� 3/2 � /2Fr2

� �h i
ðkDxÞ2 ð78Þ
In the next section, we shall compare this dispersion relation with the eigenvalues of the LB dynamics. For this purpose we
shall need to know eix�Dt . Up to order Oðk2Þ, we can write
eix�Dt ¼ 1þ ib�kDx� a�ðkDxÞ2 ð79Þ
From (78) we get
b� ¼ �
u0

v �
ffiffiffiffiffiffiffiffi
gh0

v2

r
¼ �/ðFr� 1Þ ð80Þ
and a±
a� ¼
1
2

s� 1
2

� �
1� /2ð1þ 3Fr2Þ � /2ð3þ Fr2Þ � 1

� �
Fr

h i
þ 1

2
b2 ð81Þ
Relation (79) will be re-obtained in the next section by an exact solution of the eigenvalue problem accurate to order Oðk2Þ.
See Eq. (95).
4.2. Linearization of the LB equations

Let us now consider the linearization of the LB dynamics around h = h0 and u = u0. If h0 and u0 are constant fi ¼ f eq
i ðh0;u0Þ is

a solution of the LB Eq. (6) with feq given by (13). We now consider a small perturbation �i around f eq
i ðh0;u0Þ
fi ¼ f eq
i ðh0;u0Þ þ �i
Then we immediately obtain
h ¼
X

i

fi ¼ h0 þ
X
�i; hu ¼

X
i

fiv i ¼ h0u0 þ ð�1 � �2Þv

u ¼ hu
h
¼ u0 �

u0

h0

X
i

�i þ ð�1 � �2Þ
v
h0

ð82Þ

hu2 ¼ h0u2
0 � u2

0

X
i

�i þ 2ð�1 � �2Þvu0
We can now compute f eq
i ðh;uÞ for all i.
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f eq
0 ðh;uÞ ¼ f eq

0 ðh0;u0Þ þ 1� gh0

v2 þ
u2

0

v2

� �X
i

�i �
2u0

v ð�1 � �2Þ ð83Þ

f eq
1 ðh;uÞ ¼ f eq

1 ðh0;u0Þ þ
1
2

gh0

v2 �
u2

0

v2

� �X
i

�i þ
1
2
þ u0

v

� �
ð�1 � �2Þ ð84Þ

f eq
2 ðh;uÞ ¼ f eq

2 ðh0;u0Þ þ
1
2

gh0

v2 �
u2

0

v2

� �X
i

�i �
1
2
� u0

v

� �
ð�1 � �2Þ ð85Þ
Then, in terms of the perturbation, �i, the LB shallow water equation becomes
�0ðx; t þ DtÞ
�1ðxþ vDt; t þ DtÞ
�2ðx� vDt; t þ DtÞ

0
B@

1
CA ¼ M

�0ðx; tÞ
�1ðx; tÞ
�2ðx; tÞ

0
B@

1
CA ð86Þ
with
M ¼ 1
s

s� /2ð1� Fr2Þ 1� /2ð1� Fr2Þ � 2 u0
v 1� /2ð1� Fr2Þ þ 2 u0

v
/2

2 ð1� Fr2Þ s� 1
2þ

/2

2 ð1� Fr2Þ þ u0
v

/2

2 ð1� Fr2Þ � 1
2�

u0
v

/2

2 ð1� Fr2Þ /2

2 ð1� Fr2Þ � 1
2þ

u0
v s� 1

2þ
/2

2 ð1� Fr2Þ � u0
v

0
BB@

1
CCA ð87Þ
where / and Fr are defined in (72). Thus, M depends on three dimensionless parameters, which are sP1/2, /2 and Fr2.
We can now analyze the LB scheme by taking the discrete Fourier transform of Eq. (86). We define
�ðx; tÞ ¼
X

k

AkðtÞeikx
where k = 2‘p/(NDx), ‘ = 0,1, . . . , (N � 1) and we obtain
Akðt þ DtÞ ¼ Mkð/; Fr; sÞAkðtÞ ð88Þ
with
Mk ¼
1 0 0
0 e�ikDx 0
0 0 eikDx

0
B@

1
CAM: ð89Þ
To simplify the notation, we define
a ¼ /2ð1� Fr2Þ
s

b ¼ 1
s

u0

v

and
c ¼ � 1
2s
þ a

2
þ b d ¼ � 1

2s
þ a

2
� b
Then, the matrix Mk reads
Mk ¼
1� a �2c �2d

a
2 e�ikDx 1þ cð Þe�ikDx de�ikDx

a
2 eikDx ceikDx 1þ dð ÞeikDx

0
B@

1
CA ð90Þ
Let us now show how the eigenvalues of Mk can be related to the dispersion relation found in (77). We consider solutions
of the form �(x,t) / eikx+ixt as we did for the linearized shallow water equation. Here, it means that we assume that Ak(t) can
be written as eixtAk(0). Eq. (88) then reads
eixteixDtAkð0Þ ¼ MkeixtAkð0Þ:
A solution exists provided that
ðMk � eixDtIÞAkð0Þ ¼ 0
has non-trivial solutions. That means that eixDt must be an eigenvalue of Mk. Eq. (79) gives the expected expression of eixDt,
in the hydrodynamic limit, to order Oðk2Þ.

The eigenvalues of Mk can easily be found numerically for all values of s,/,Fr and k. This is discussed in the next section.
But before, we consider an analytical solution of the eigenvalue problem, accurate to order Oðk2Þ. With
c� ¼ e�ikDx cþ ¼ eikDx
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the eigenvalue equation associated with Mk reads:
ð1� kÞðc� � kÞðcþ � kÞ þ cc�ðcþ � kÞð1� kÞ þ dcþðc� � kÞð1� kÞ � aðc� � kÞðcþ � kÞ ¼ 0 ð91Þ
For c- = c+ = 1 i.e. for a wave number k = 0, the above equation reads
ð1� kÞ2ð1þ c þ d� a� kÞ ¼ 0
Since c þ d� a ¼ � 1
s the three eigenvalues are
kþ ¼ 1 k� ¼ 1 k3 ¼ 1� 1
s

ð92Þ
When the Froude number is 1, a = 0 and (91) becomes
ð1� kÞ ðc� � kÞðcþ � kÞ þ cc�ðcþ � kÞ þ dcþðc� � kÞ

 �

¼ 0
There is clearly an eigenvalue k = 1 and the other two are defined through
k2 � k½cþ þ c� þ cc� þ dcþ� þ 1þ c þ d ¼ 0
In general, Eq. (91) can be written as
k3 � k2ð1� aþ cþ þ c� þ cc� þ dcþÞ þ k½1þ c þ dþ ðcþ þ c�Þð1� aÞ þ cc� þ dcþ� þ
1
s
� 1 ¼ 0
The two eigenvalues k± corresponding to water height h and water flow hu are such that k± = 1, for k = 0, due to the con-
servation laws. Therefore, to order Oðk2Þ, we have:
k ¼ 1þ ibkDx� aðkDxÞ2 cþ ¼ 1þ ikDx� 1
2
ðkDxÞ2 c� ¼ 1� ikDx� 1

2
ðkDxÞ2 ð93Þ
where a and b are parameters to be determined. Note that we could similarly obtain the third eigenvalue k3 of the problem
because, for k = 0, Eq. (92) tells us that this eigenvalue is 1 � (1/s).

Eq. (91) can then be solved order by order. As this is a rather tedious and lengthy (but straightforward) calculation, we
only give the results.

Order Oðk2Þ, value of b: At order Oðk2Þ, Eq. (91) yields
b� ¼ �/ðFr� 1Þ ¼ �u0

v �
ffiffiffiffiffiffiffiffi
gh0

v2

r
ð94Þ
as expected from the dispersion relation describing waves propagating at speeds �u0 �
ffiffiffiffiffiffiffiffi
gh0

p
.

Order Oðk3Þ, value of a:
At order Oðk3Þ, we obtain a condition for a which is
a� ¼
1
2

s� 1
2

� �
1� /2ð1þ 3Fr2Þ � ð/2ðFr2 þ 3Þ � 1ÞFr
h i

þ 1
2

b2 ð95Þ
Relations (94) and (95) are in perfect agreement with the dispersion relation obtained from the Chapman–Enskog expansion
of the LB shallow water model. See Eqs. (80) and (81).

4.3. Numerical analysis of the eigenvalue problem

In this section we compare the eigenvalues k of Mk obtained numerically (Matlab solutions) for all values of 0 6 kDx < 2p
and our analytical expression k� ¼ eix�Dt with ix±Dt given by (78), namely
ix�Dt ¼ i �u0

v �
ffiffiffiffiffiffiffiffi
gh0

v2

r !
ðkDxÞ � 1

2
s� 1

2

� �
1� /2 � 3/2Fr2 � Fr 1� 3/2 � /2Fr2

� �h i
ðkDxÞ2 ð96Þ
In Fig. 4, we show Re(k±) and Im(k±) for two arbitrary choices of the model parameters /, Fr and s. The solid lines corre-
spond to our analytical expression eix�Dt and the dots to the exact eigenvalue (found numerically). For Froude number Fr = 1,
we observe in the lower right panel that the eigenvalue has a null imaginary part due to the fact that the wave is at rest. For
small enough wave number k, we clearly observe an agreement between the eigenvalues of the LB model and the dispersion
relation of the shallow water equation. Actually, Fig. 5 shows the quantities
DðkÞ ¼ jRe k� eix�Dt
� �

j or DðkÞ ¼ jIm k� eix�Dt
� �

j ð97Þ
as a function of the wave number k. The quantity D is the difference between the shallow water dispersion equation and the
LB model. We see that the LB model is second-order accurate because the error D grows as OððkDxÞ3Þ for the imaginary part
(i.e. the wave propagation process) and grows as OððkDxÞ4Þ for the real part (i.e. the dissipation process). The results of this



0 6.28
Δx k

-1.5

1.5

1

0

-1

R
e(

ei
ge

nv
al

ue
s)

τ=0.51
φ=0.63
Fr=0.32

0 6.28
Δx k

-1.5

1.5

1

0

-1

Im
(e

ig
en

va
lu

es
)

τ=0.51
φ=0.63
Fr=0.32

0 6.28
Δx k

-1.5

1.5

1

0

-1

R
e(

ei
ge

nv
al

ue
s)

τ=0.6
φ=0.32
Fr=1.0

0 6.28
Δx k

-1.5

1.5

1

0

-1

Im
(e

ig
en

va
lu

es
)

τ=0.6
φ=0.32
Fr=1.0
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section confirm the validity of our analytical derivation (Chapman–Enskog expansion) and confirm that the LB model is a
second-order accurate solver of the shallow water Eq. (35).

4.4. Numerical stability

The stability of the LB scheme is guaranteed if —k—, the norm of the eigenvalues of Mk, is not larger than 1 for all k = 2‘p/
(NDx), with ‘ = 0,1, . . . , (N � 1). Our analytical expression (79) approximates the value of k only for small-to-moderate values
of k. Therefore this expression cannot be used to assess the parameter range for which unconditional stability is achieved. On
the other hand, a numerical investigation can be considered. We simply have to explore the space of possible values for the
parameters /, Fr and s. For each of them one computes all eigenvalues k of Mk(s, /, Fr). If, for all k, —k— 6 1, then the LB
model is unconditionally stable for the chosen set of parameters.
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Fig. 5. The dots show the value of D(kDx), as given by (97) in a log–log plot. On the left, the accuracy of the real part of the dispersion relation is found to be
second-order because D(kDx) / k4, as indicated by the solid line of slope 4. On the right, we show the accuracy of the imaginary part of the dispersion
relation. The error between the LB model and the shallow water equation grows as (kDx)3, as proved by the solid line which has slope 3.
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As an illustration, Fig. 6 shows the norm of the three eigenvalues of Mk(s,/,Fr), as a function of all values of the wave num-
bers 0 6 kDx < 2p. We observe a numerical instability of the model for the chosen parameters because some eigenvalue have
a norm larger than one. A systematic investigation of the numerical stability is given in Fig. 7. We observe that the relaxation
time, s, plays no role in the stability of the D1Q3 model for the shallow water, provided it is larger than or equal to 1/2.

We note that Froude number, Fr = 1, is possible, provided that / is small enough (i.e. 1// large enough).
The stability range observed in Fig. 7 can be explained by a simple theoretical argument. Since the LB model describes

waves propagating at speed �u0 �
ffiffiffiffiffiffiffiffi
gh0

p
, we must have the conditions
Fig. 6.
choices

Fig. 7.
corresp
�u0 þ
ffiffiffiffiffiffiffiffi
gh0

q
< v � u0 �

ffiffiffiffiffiffiffiffi
gh0

q
> �v ð98Þ
so that the waves propagate slower than the lattice speed v, the speed at which information travels in the lattice. This is a
kind of a Courant condition. By dividing these equations by

ffiffiffiffiffiffiffiffi
gh0

p
, we obtain
1� 1
/
< Fr <

1
/
� 1 ð99Þ
This line is represented in Fig. 7 (solid, dashed line) and shows a very good agreement with the numerically observed sta-
bility limit.

We can also explain these limits of the stability region by analyzing the dispersion relation (78). We can write
eix�Dt ¼ eib�kDxe�g�k2ðDxÞ2 where
g� ¼
1
2

s� 1
2

� �
1� /2 � 3/2Fr2 � Fr 1� 3/2 � /2Fr2

� �h i
ð100Þ
Clearly, g < 0 is a sufficient condition for the numerical scheme to be unstable, because, for k?0, eix�Dt ! k�. When sP1/2, a
negative value of g depends only on the choice of / and Fr. It turns out that g+ can be factorized as
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gþ ¼ �
1
2

s� 1
2

� �
/2ðFrþ 1Þ Fr� 1

/
þ 1

� �
Frþ 1

/
þ 1

� �
ð101Þ
Thus, for /P0 and FrP0,g+ becomes negative if
Fr� 1
/
þ 1 > 0 i:e: Fr >

1
/
� 1
This is precisely the limit we found from the Courant condition.
Furthermore, we see that g� can be factorized as
g� ¼
1
2

s� 1
2

� �
/2 Fr� 1ð Þ Fr� 1� 1

/

� �
Fr� 1þ 1

/

� �
ð102Þ
In the region obeying the Courant condition (i.e. Fr < /�1 � 1) we certainly have Fr < /�1 + 1 and Fr > 1 � /�1 Therefore the
condition for g� to be negative (and the numerical scheme unstable) is FrP1, as already obtained numerically.

These limits are also verified by the simulation in Section 5.5

5. Benchmark

In this section, we validate numerically the analytical description derived in the previous section. More specifically we
compare the LB model with the Preissmann scheme and the finite volume (FV) method with respect to the numerical sta-
bility, precision and performance.

5.1. Simulation setup

We consider the steady flow in a canal of length L where the inflow discharge and the outflow water height are fixed at
values Q0 and h0. In this case, the analytical solution can be obtained by integrating the ordinary differential equation for
h(x):
@xh ¼ ghðI � JÞ
gh� u2 ð103Þ
with the boundary condition h(L) = h0 and J ¼ n2Q 2
0

B2h2ð Bh
Bþ2hÞ

4=3 ; u ¼ Q0
Bh.

This exact solution is calculated by using the ode45 solver of Matlab, and referenced as href. This benchmark is illustrated
in Fig. 8.

The numerical schemes we want to compare are time-dependent solvers. We start the simulation with an initial condi-
tion and let the fluid reach its new steady state. The initial condition is a uniform profile of the water height h(x,0) = h0 and
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discharge Q(x,0) = Qe. Where Qe is the discharge corresponding to this uniform water height and calculated by the condition
I = J. So, Q e ¼

ffiffi
I
p

Bh0
n ð Bh

Bþ2h Þ
2=3.

In order to avoid a sudden change, the inflow discharge, Qin, will be increased in ramp from the initial value Qe to the final
value Q0. For the numerical application, we get h0 = 0.1 m, Q0 = 1.5Qe, I = 2.6 � 10�3, B = 0.1 m and n = 0.0103.

All three methods are implemented in Matlab and none of them has been fine tuned for performance optimization. The FV
code was initially developed by Simpson and Castelltort [19].
5.2. Preissmann implicit scheme

The approximation of the function, f (h or u), and its derivatives in space and in time is based on the following expression
(see Fig. 9):
f ðx; tÞ ¼ ð1� hÞ½/f j
iþ1 þ ð1� /Þf j

i � þ h½/f jþ1
iþ1 þ ð1� /Þf jþ1

i �
@f
@x
ðx; tÞ ¼ 1

Dx
½ð1� hÞðf j

iþ1 � f j
i Þ þ hðf jþ1

iþ1 � f jþ1
i Þ�

@f
@t
ðx; tÞ ¼ 1

Dt
½ð1� /Þðf jþ1

i � f j
i Þ þ /ðf jþ1

iþ1 � f j
iþ1Þ�

ð104Þ
where i is the space index, j the time index and 0 6 h 6 1,0 6 / 6 1, are weighting coefficients. If h > 0.5 we get an uncon-
ditionally stable scheme. For simulation, we choose h = 0.75 and / = 0.5.

To solve the shallow water equation, we perform the Preissmann scheme for h and u in time and space, and obtain a sys-
tem of non-linear equations that can be solved by using the Newton–Raphson method. The boundary condition can be car-
ried out by adding two equations: Bh1u1 = Qin and hN = h0.
5.3. Finite volume method

Firstly, we rewrite the shallow water equations as:
@U
@t
þ @E
@x
¼ S ð105Þ� 	 � 	 � 	
where U ¼ h
hu

is the solution vector, E ¼ hu
1
2 gh2 þ hu2 is the flux vector, and S ¼ 0

ghðI � JÞ is the source vector.

By integrating (105) over an arbitrary segment Li, the basic equation of the finite volume method is obtained (see Fig. 10):
@

@t

Z
Li

Udxþ ½E�xiþ1
xi
¼
Z

Li

Sdx: ð106Þ
Rewriting the last equation in discrete form, the governing equations become:
Li
DUi

Dt
þ ½E�xiþ1

xi
¼ LiSi: ð107Þ
The flux can be estimated by solving a series of local Riemann problems (see [19]), (107) can now be solved by the stan-
dard explicit forward Euler method. Note that in the code which was provided to us the Riemann problem is solved with
first-order accuracy, although a second-order accurate solution is also possible.

The boundary condition for the inflow discharge is carried out by setting h1 = h2 and Bh1u1 = Qin; the boundary condition
for the outflow water height is implemented as hN = h0 and hNuN = hN�1uN�1.
Fig. 9. Preissmann implicit scheme.

Fig. 10. Finite volume method.
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5.4. LB method

The LB scheme has been described in full detail the previous sections. Here we only describe how to implement the
boundary conditions. In reference to Fig. 11 the inflow discharge is obtained by imposing: f1 ¼ Qin

B � f0 � f2. The outflow water
height is carried out by f2 = h0 � f0 � f1. But this solution will create a rapid change in f2 and cause oscillations for the dis-
charge at the right extremity. So we use the following relaxation algorithm:

	 Calculate the new value of f2 as: f2 = h0 � f0 � f1.
	 Calculate the new discharge: q = v(f1 � f2)
	 Calculate the true discharge at the outflow-end: qt = (1 � a)q + aqt�Dt where a 2 [0;1]
	 Re-calculate the value of f2: f2 ¼ f1 � qt

v

5.5. Simulation

With all three methods (LB, Preissmann, FV) a simulation is run until a steady flow is reached. Different numbers of
points, N, are used to test the precision. For each N, the spatial step is defined as Dx ¼ L

N and the time step, Dt ¼ Dx
v , where

v is fixed (v = 2). These values are used for all three methods. We consider that the steady solution hs is attained if
e < 10�8 where e is the relative distance of the water height profile between two consecutive iterations. It is calculated as:
e ¼ kht � ht�Dtk
khtk

ð108Þ
with kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiP

ix
2
i

q
. The relative error, �, is calculated as:
� ¼ khs � href k
khref k

: ð109Þ
The CPU time, TCPU, is determined as the time to reach the steady solution. The results are displayed in (Fig. 12) and
(Fig. 13). The Zhou’s force model and Guo’s simplified force term (the latter was obtained in Section 3.2 with A = 0 and
B ¼ ð1� 1

2sÞF) behave identically. Both exhibit second-order accuracy from 8 to 512 grid points before showing an error in-
crease when N = 1024. This suggests that the convective scaling Dt / Dxwe used should be replaced by a diffusing scaling
Dt / Dx2 when Dx becomes small.
Fig. 11. LB method.
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The Guo force term is only first-order accurate and is also less precise in magnitude. The Preissmann scheme has a same
performance as Zhou’s force term, except for N = 64 and N = 128. In these cases, the steady solution is reached with e = 0, so �
cannot be reduced.

Finally, the finite volume method is first-order (as expected), and is the least accurate.
We previously mentioned that Guo’s force term leads to an implicit definition of u while Zhou’s force term does not. In

calculating the CPU time, we used Zhou’s force term.
For all methods, the CPU time increases by a factor of 4 when the number of points is doubled, because the number of

iterations is also doubled to reach the steady solution (due to our scaling of Dt versus Dx). We observe that the LB solver
is much faster than the two others. It is more than 100 times faster than the Preismann methods and about 10 times faster
than the FV approach. This fact can be explained by examinating in detail the calculation of each scheme. For the LB method,
at each time step, just feq and fout need to be evaluated to obtain h and u. For the FV approach, we have to solve a series of local
Riemann problems and the source term is calculated by point-implicitly method (see [19]), which results great amount of
operators to execute. In Preissmann schema, a iteration method is use to find the solution of a system of N non-linear equa-
tion which requires a great number of evaluation of these equations. As a result, this schema is far slower than the two
others.

Finally we consider the numerical stability of these three schemes. The Preissmann scheme is implicit and uncondition-
ally stable. The stability region of the LBM is limited by Fr < 1 and Fr < 1

/� 1 as indicated in (Fig. 7). This conclusion can be
verified by the simulation, as follows.

We consider a long canal of length, L = 8 m, with no slope and no friction. We impose periodic boundary conditions by
setting f in

1 ðx1Þ ¼ f out
1 ðxNÞ and f in

2 ðxNÞ ¼ f out
2 ðx1Þ (see Fig. 11). We initialize this canal with a water height perturbed as

hðx;0Þ ¼ h0 þ 0:1e�
ðx�4Þ2

0:1 with h0 = 0.1 m. An initial speed u is imposed according to the chosen Froude number, according
to the relation u ¼ Fr

ffiffiffiffiffiffiffiffi
gh0

p
. In order to choose / the lattice speed v is adjusted as v ¼

ffiffiffiffiffiffi
gh0

p
/ . We do this simulation with dif-

ferent values of s.
The stability of the system is tested by using the entropies notion [17]. Entropies of the system (1), (2) without friction

and slope are functions (h,u) ? E(h,u) such that for some function F:(h,u) ? (h,u), called the entropy flux, we have:
@F
@h
¼ u

@E
@h
þ g

@E
@u

and
@F
@u
¼ h

@E
@h
þ u

@E
@u

: ð110Þ
With these functions, if we let R ¼
R L

0 Eðh;uÞdx then we have _R ¼ �½Fðh;uÞ�L0 ¼ 0 because of the periodic boundary condition.
This means that R is a conserved scalar quantity which can be used to test the stability of the integration scheme. A possible
entropy function for the shallow water Eqs. (1), (2) is introduced in [7]:
Eðh;uÞ ¼ 1
2

hu2 þ 1
2

gh2
; Fðh; uÞ ¼ 1

2
hu3 þ gh2u ð111Þ
We will consider that the considered discretization scheme is stable if after 10,000 iterations the entropy value has not
exceeded 1% of its initial value. We follow the same procedure for the FV method, but this time, taking into account only Fr
and /, since s is not a parameter of the FV scheme. The results are presented in Fig. 14.
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As expected, the limits of stability of the LB method are the Courant condition and Fr < 1. However, we can modify the
present D1Q3 model to obtain a new model which is stable for both Fr < 1 and Fr > 1 as is described in [3].
6. Coupling experiments

In this section, we show how to use the 1D shallow water LB model to simulate a complex canal structure by coupling two
or more canal sections. We will first consider many examples of hydraulic works like submerged gates, pumping stations,
spillways, branching junctions or mixed interconnection structures. Then we will apply the proposed coupling methodology
(and the 1D shallow water LB model for single reaches) to develop the full model of a real example: the Canal de la Bourne
network which irrigates the East of Valence (Drôme, France) agricultural plains with the water from the Vercors Mountains.
Finally some numerical simulations will prove the efficiency of the proposed methodology.

6.1. Coupling relations

When coupling two 1D canal sections that are described with a LB model, some of the fi’s are known and other are un-
known at the junction. In order to connect two segments coupled by a gate or a pump station, one has to compute, for each
segment, the missing distributions. Referring to Fig. 15 we denote by fi the density distributions of the up-stream system, and
by f 0i the density distributions of the down-stream system. The unknown variables are then f2 and f 01. They can be obtained by
solving an equation describing the physical properties of the coupling.

6.1.1. Connection through a gate
A gate in a submerged regime is presented in Fig. 16. The flow rate Q through the gate is governed by the difference be-

tween the up-stream water level h and down-stream level h0, and is given by the well known gate equation [8]
Q ¼ Bgah
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðh� h0Þ

q
ð112Þ
where Bg is the gate width, a the gate coefficient, h the gate opening and g the gravity.
Fig. 15. The known (f 02; f 00 and f1,f0) and unknown (f2 and f 01) distributions fi at a connection point.
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The coupling through a gate imposes that the flows Q and Q0 are the same. From the definition of the water level and the
discharge, we have the relations:
h ¼ f0 þ f1 þ f2

h0 ¼ f 00 þ f 01 þ f 02

Q ¼ vBðf1 � f2Þ ¼ vB0ðf 01 � f 02Þ ¼ Bgah
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðh� h0Þ

q ð113Þ
where B denotes the width at up-stream and B0 the width at down-stream of the gate. So we obtain a system of two equa-
tions that we can solve for f2 and f 01
Bðf1 � f2Þ ¼ B0ðf 01 � f 02Þ
vBðf1 � f2Þ ¼ Bgah

ffiffiffiffiffiffi
2g

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðf0 þ f1 þ f2Þ � ðf 00 þ f 01 þ f 02Þ

p
(

ð114Þ
From the first equation, we have f 01 ¼ B=B0ðf1 � f2Þ þ f 02. By replacing this in the second equation, we have:
f1 � f2 ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r þ f2 1þ B

B0

� �s
; k ¼ Bgah

ffiffiffiffiffiffi
2g

p
vB

; r ¼ f0 � f 00 þ f1 1� B
B0

� �
� 2f 02 ð115Þ
which is equivalent to
f 2
2 � ð2f 1 þ ð1þ B=B0Þk2Þf2 þ f 2

1 � k2r ¼ 0 ð116Þ
This is a second-order equation in f2 and we take the positive solution:
f2 ¼
1
2

2f 1 þ ð1þ B=B0Þk2 þ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1þ B=B0Þf1 þ ð1þ B=B0Þ2k2 þ 4r

q� �
ð117Þ
And f 01 is calculated by:
f 01 ¼ B=B0ðf1 � f2Þ þ f 02 ð118Þ
6.1.2. Connection by a pumping station
A pumping station is illustrated in Fig. 17. The relation between the flow rate, Q, and water level, h, before the pump and

Q0 and h0 after the pump are that
Q ¼ Q 0 þ Q p

h ¼ h0
ð119Þ
where Qp is the flow rate taken by the pump.
Using the same notation as introduced in Fig. 15 and from the definition of the water depth and the flow rate we obtain
vBðf1 � f2Þ ¼ vB0ðf 01 � f 02Þ þ Q p

f0 þ f1 þ f2 ¼ f 00 þ f 01 þ f 02

(
)

f2 ¼ 1
1þB=B0 ð2f 02 þ f 00 � f0 þ ðB=B0 � 1Þf1 � Qp

vBÞ

f 01 ¼ 1
2þB0=B ð2f 1 þ f0 � f 00 þ ðB

0=B� 1Þf 02 �
Qp

vBÞ

8<
: ð120Þ
Fig. 17. Schematic description of a pumping station.



P. van Thang et al. / Journal of Computational Physics 229 (2010) 7373–7400 7395
6.1.3. Connection through a spillway
Spillways, such as represented in Fig. 18, are commonly used in irrigation networks to guarantee (stabilize) the water le-

vel in the up-stream part whatever the water flow is. The flow rate through the spillway is given by [8]:
Q s ¼
LsRs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðh� hsÞ3

q
; if h P hs

0 if h < hs

(
ð121Þ
where Ls is the spillway’s width, Rs, the spillway’s coefficient, h, the water level at up-stream and, hs, the spillway’s height. By
the definition of h and Q, we have:
vBðf1 � f2Þ ¼ LsRs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðf0 þ f1 þ f2 � hsÞ3

q
; if f0 þ f1 þ f2 P hs

0 if f0 þ f1 þ f2 < hs:

(
ð122Þ
This non-linear equation can be solved by any numerical method to obtain the unknown f2. More complex models for the
spillway can be used without modifying the general structure of these constitutive equations. Again the other unknown
f 01 is determined using the water conservation assumption by Eq. (118).

6.1.4. Branching canal
We can also define the coupling relation in the case of a canal that splits in two branches. In terms of the distributions fi,

the situation is illustrated in Fig. 19. An up-stream section with distributions f meets two down-stream sections described
with distribution functions f0 and f00, respectively.

At the branching, the water height is the same for the three branches, whereas the up-stream discharge is divided in two
parts. Thus, the following relations have to be satisfied
h ¼ h0 ¼ h00

Q ¼ Q 0 þ Q 00
ð123Þ
where h, Q are water height and discharge in the up-stream canal at the junction, while h0, Q0, and h00, Q00 are water heights
and discharges in the two down-stream branches.

The above three equations can be expressed in terms of the distributions
f0 þ f1 þ f2 ¼ f 00 þ f 01 þ f 02
f0 þ f1 þ f2 ¼ f 000 þ f 001 þ f 002
vBðf1 � f2Þ ¼ vB0ðf 01 � f 02Þ þ vB00ðf 001 � f 002 Þ

8><
>: ð124Þ
where B, B0, and B00 denote the canal’s width in the three branches. After isolating the unknown distributions, this systems
becomes
f2 � f 01 ¼ �f0 � f1 þ f 00 þ f 02
f2 � f 001 ¼ �f0 � f1 þ f 000 þ f 002
Bf2 þ B0f 01 þ B00f 001 ¼ Bf1 þ B0f 02 þ B00f 002

8><
>: ð125Þ
Fig. 18. Spillway structure.

Fig. 19. The known (f 02; f 00; f 002 ; f 000 and f1, f0) and unknown (f2; f 01 and f 001 ) distributions fi at a connection point.



Fig. 20. Structure with two gates and one spillway in parallel.
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which can be solved as
f2 ¼
1
K
�ðB0 þ B00Þf0 þ ðB� B0 � B00Þf1 þ B0f 00 þ 2B0f 02 þ B00f 000 þ 2B00f 002

 �

f 01 ¼
1
K
½Bf0 þ 2Bf1 � ðBþ B00Þf 00 þ ðB� B0 þ B00Þf 02 þ B00f 000 þ 2B00f 002 �

f 001 ¼
1
K
½Bf0 þ 2Bf1 þ B0f 00 þ 2B0f 02 � ðBþ B0Þf 000 þ ð�B� B0 þ B00Þf 002 �

ð126Þ
where K = B + B0 + B00

6.1.5. Connection through a mixed structure
Finally, we show how to connect two canal sections with a mixed structure consisting of different elements placed in par-

allel (such as two gates side by side, a gate and a spillway, etc.). We present here the case of two gates and one spillway as
represented in Fig. 20. The other cases can be treated similarly.

The flow rate is determined by:
Q ¼ Q g1 þ Qg2 þ Q s

Q g1
¼ a1Bg1h1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðh� h0Þ

q
Q g2
¼ a2Bg2h2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðh� h0Þ

q

Q s ¼
LsRs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2gðh� hsÞ3

q
; if h P hs

0 if h < hs

( ð127Þ
As in previous sections, we have the following relations:
Q ¼ vBðf1 � f2Þ ¼ vB0ðf 01 � f 02Þ
h ¼ f0 þ f1 þ f2

h0 ¼ f 00 þ f 01 þ f 02

ð128Þ
Again, these equations need to be solved by a numerical method to obtain the unknowns f2 and f 01.

6.2. Simulation example

Our simulation example is a model of the canal de la Bourne irrigation network. This network was built in the late 19th
century to irrigate the plains around Valence in France. It is still in use now and its fine modelling and control has become a
new challenge. Indeed, the demand on water considerably increased these last few decades as, more recently, the constraints
on the quantity of water which may be withdrawn from the up-stream natural river La Bourne became more and more bind-
ing limitations. A sketch of the canal network is presented in Fig. 21. The main reach (from x = 0 to x = x6) is about 30 km long.
The main irrigation network consists of:

	 An up-stream reservoir at Ecancière which supplies the canal through two gates and has a constant water level.
	 A pumping station at Martinet which pumps water from Isère river to the canal or can produce electricity during the

Autumn and Winter seasons.
	 A gate at Mondy which consists of two submerged gates and a spillway (see the mixed interconnection structure devel-

oped in the previous section).
	 A gate at Orme with the same structure as the one in Mondy.
	 A Secondary canal, termed S3, which takes water from the canal through a submerged gate.
	 A spillway, just after S3, which aims at maintaining the water supply for S3.
	 Two reservoirs at Lafarge and Freydier which receive the water from the canal through spillways.

To simulate this system, we divide it into six segments and use the previously presented methods to connect them. The param-
eters used are presented in Tables 1–3. The lattice Boltzmann model is carried out with Dx = 100 (m), Dt = 40 (s) and s = 0.7;



Fig. 21. Structure of the Bourne irrigation system.
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The model has first to be initialized. From the shallow water Eqs. (1), (2), it could be noticed that the water flow equilib-
rium profile is necessarily uniform while the water level profile is generally non-uniform (unless the condition I = J holds
which is the case only when the friction forces precisely equilibrate the ‘‘gravity” forces). The steady state initial profiles
are thus constructed in the following way:

	 Choose the water height hðxþ6 Þ and calculate the flow rate of the steady state Q0 = Q(x6)
	 Integrate Eq. (103) to obtain the water height h(x), x 2 [x5, x6] with the boundary condition at x6

	 Calculate the water height up-stream of the spillway S3 hðxþ5 Þ by imposing the discharge through the spillway Q0

	 Integrate Eq. (103) to obtain the water height h(x), x 2 [x4, x5] with the boundary condition at xþ5
	 Choose the flow rate withdrawn by the secondary canal S3 QS3 and integrate Eq. (103) to obtain the water height h(x),

x 2 [x3, x4] with the boundary condition at xþ4 : hðxþ4 Þ ¼ hðx�4 Þ and the discharge Q1 = Q0 + QS3

	 Choose the water height at xþ3 and determine the gates opening by using the discharge Q1, the gate equations and the
spillway equations.
	 Integrate Eq. (103) to obtain the water height h(x), x 2 [x2, x3] with the boundary condition at xþ3
	 Choose the water height at xþ2 and determine the gates opening by using the discharge Q1, the gate equations and the

spillway equations.
	 Integrate Eq. (103) to obtain the water height h(x), x 2 [x1, x2] with the boundary condition at xþ2
	 Choose the discharge supplied by the pump station Qp

	 Integrate Eq. (103) to obtain the water height h(x), x 2 [0, x1] with the boundary condition at xþ2 : hðxþ2 Þ ¼ hðx�2 Þ and the
discharge Q2 = Q1 � Qp

	 Use the boundary condition at x4 and the discharge QS3 to initialize the secondary canal S3.
Table 1
Parameters for the reaches.

L1 L2 L3 L4 L5 L6

Length (m) 5900 6900 2650 7000 100 3325
Slope (10�4) 2,753 2,753 2,441 2,4 2,4 2,4
Width (m) 5,605 5,605 5,1 4,36 4,36 4,36
Manning coefficient 0.033

Table 2
Parameters for the gates.

a1 a2 B1 (m) B2 (m)

Ecancière 0,66 0,66 2,4 2,4
Mondy 1,07 2,9
Orme 2,9 2,9
Gate in S3 0,66 2

Table 3
Parameters of the spillways.

Rs Ls (m) hs (m)

Mondy 0,35 0,8 1,3
Orme 1,91 1,7
Spillway S3 9,6 0,8
Lafarge 4 1,35
Freydier 2 1,57
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Fig. 22. Initial conditions for the principal canal.
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Fig. 23. Initial conditions for the secondary canal.

7398 P. van Thang et al. / Journal of Computational Physics 229 (2010) 7373–7400
These initial conditions are presented in Figs. 22 and 23. Starting with this equilibrium configuration for the irrigation
network, we use the following scenario for the simulation of the transient behavior of the model. Firstly, at time t = 0 (h)
the opening of the first gate at Ecancière increases by 90%, following a ramp, to reach its final value with a rate of
5.6 � 10�4 (%/s). Then at time t = 1 (h) the pumping station at Martinet starts to withdraw water from the canal. The with-
drawal flow rate increases with a rate of 0.02 (m3/s) to reach its final value at 0.5 (m3/s). Finally, at time t = 2 (h), the gate
opening in S3 increases by 30%, following a ramp, to reach its final value with the same speed as for the gate at Ecancière. The
simulation results are presented in Figs. 24 and 25. We can see the wave propagation phenomenon with constant speed and
the discharge discontinuity corresponding to withdrawal at the pumping station and in the secondary canal. These simula-
tion results agree with the measured values for this scenario.

Finally, from a complexity point of view, it could be noticed that with the computer used to perform this simulation (with
a code written in Matlab) it is only possible to update up to 1.3 � 104 sites per second. A simulation over 1 year for the above
network described with 159 sites requires about 2.5 h of CPU times. A C++ implementation is typically 100 times faster,
without any code optimization, and reduces the time needed for this 1-year simulation (with the same spatial and temporal
resolutions) to the order of a few minutes of CPU times. For real scale irrigation networks we are thus far beyond real time
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requirements. However this efficiency may be useful for reduced scale experimental micro-canals (with typically fast
dynamics associated with low frictions and short reaches which are only a few meters long, rather than a few kilometers
long), for complex irrigation networks (with a complex tree of secondary canals connected trough dozens of hydraulic works,
many pumping stations or reservoirs, etc.) or for other fluid flow application examples for the ideas presented in this paper.

7. Conclusions

In this work, we discuss the capability of the Lattice Boltzmann method to solve the 1D shallow water equation. We pro-
posed an exact analytical study of its accuracy and its stability when the system is linearized around a water level, h, and a
velocity, u. We derived the dissipative term as well as the non-equilibrium part of the distribution function, fi. Our derivation
is validated by numerical simulations. Our results show that the viscosity term reported in some recent publications on the
LB method for the shallow water equations has been incorrectly calculated. We also propose a detailed analysis of the way to
add an external force on the LB model. Exact analytical solutions of the LB model with force have been obtained in a simple
situation.

Furthermore we compare the 1D LB model with two other solvers: an implicit finite difference scheme and a finite vol-
ume approach. Our comparison showed that the LB model is more precise and significantly faster than the other methods.
However the stability region of the LB model is limited by the Courant condition and sub-critical flow conditions, unless
some model extensions are considered, such as the asymmetric D1Q3 LB model which can correctly describe the transition
between the fluvial and torrential regimes.

A coupling methodology to interconnect several 1D models is also developed. It is found to give very good results. There-
fore our coupling strategy allows us to simulate many canal sections interconnected through different types of structures
(e.g. gates, spillways, pumping stations or branchings).
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Other coupling problems, such as the coupling between a 1D and a 2D LB shallow water models, or between two 1D mod-
els with different resolutions are also possible although not described here. See [21] for more details. The coupling of LB shal-
low water models with a fully resolved, free surface flow model, such as that developed in [12,13], is currently under
investigation and will be reported in a forthcoming publication.

All these results show the promising potential of the LB approach to simulate a realistic complex network of irrigation
canals.

Acknowledgment

We thank Guy Simpson for providing us with the finite volume solver used in this study.

References

[1] S. Chen, G.D. Doolen, Lattice Boltzmann methods for fluid flows, Annu. Rev. Fluid Mech. 30 (1998) 329.
[2] B. Chopard, M. Droz, Cellular Automata Modeling of Physical Systems, Cambridge University Press, 1998.
[3] Bastien Chopard, Pham van Thang, Laurent Lefèvre, An asymmetric lattice boltzmann model for the 1D shallow water equation, Commun. Comput.

Phys., submitted for publication.
[4] V.T. Chow, Open Channel Hydraulics, McGraw Hill, New York, 1985.
[5] P.J. Dellar, Nonhydrodynamic modes and a priori construction of shallow water lattice boltzmann equation, Phys. Rev. E 65 (2002) 036309.
[6] J.B. Frandsen, A simple lbe run-up model, Prog. Comput. Fluid Dyn. 8 (2008) 222–232.
[7] D. Georges, X. Litrico (Eds.), Automatique pour la gestion des ressources en eau, Hermès, 2002.
[8] W.H. Graf, M.S. Altinakar, Hydraulique fluviale – Ecoulement et phénomènes de transport dans les canaux â géométrie simple, Traité de génie civil de

l’Ecole Polytechnique Fédérale de Lausanne, vol. 16. Presses Polytechniques Universitaires Romandes, 2000. ISBN 978-2-88074-812-8.
[9] Zhaoli Guo, Chguang Zheng, Baochang Shi, Discrete lattice effects on forcing terms in the lattice Boltzmann method, Phys. Rev. E 65 (2002) 046308.

[10] Xiaoyi He, Xiaowen Shan, Gary D. Doolen, Discrete Boltzmann equation model for nonindeal gases, Phys. Rev. E 57 (1998) R13–R16.
[11] A.L. Kupershtokh, A new method of incorporating a body force term into a lattice Boltzmann equation, in: France University of Poitier, editor, 5ème

Congrès International d’Electrodynamique, 2004, pp. 241–246.
[12] O. Marcou, B. Chopard, S. El Yacoubi, Modeling of irrigation canals: a comparative study, Int. J. Mod. Phys. C 18 (4) (2007) 739–748.
[13] O. Marcou, B. Chopard, S. El Yacoubi, B. Hamroun, L. Lefèvre, E. Mendes, Lattice Boltzmann models for simulation and control of unsteady flows in open

channels, J. Irr. Drain. Eng., in press.
[14] O. Marcou, S. El Yacoubi, B. Chopard. A bi-fluid Lattice Boltzmann model for water flow in an irrigation channel, in: International Conference on Cellular

Automata for Research and Industry, No. 7, Perpignan, France, 2006, pp. 373–382.
[15] Y.H. Qian, D. d’Humières, P. Lallemand, Lattice BGK models for Navier–Stokes equation, Europhys. Lett. 17 (6) (1992) 479–484.
[16] R. Salmon, The lattice Boltzmann method as a basis for ocean circulation modeling, J. Mar. Res. 57 (1999) 503–535.
[17] Denis Serre, Systèmes de lois de conservation I, Diderot Editeur, Arts et Sciences (1996).
[18] Xiaowen Shan, Hudong Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47 (1993) 1815–1819.
[19] Guy Simpson, Sébastien Castelltort, Coupled model of surface water flow, sediment transport and morphological evolution, Comput. Geosci. 32 (2006)

1600–1614.
[20] Sauro Succi, The Lattice Boltzmann Equation, For Fluid Dynamics and Beyond, Oxford University Press, 2001.
[21] Pham van Thang, Modélisation et commande des systèmes non-linéaire à paramètres distribués par la méthode de Boltzmann sur réseau: application

aux canaux d’irrigation. Technical report, Master’s dissertation, Grenoble INP ESISAR, France, 2009.
[22] J.G. Zhou, Lattice Boltzmann Methods for Shallow Water Flows, Springer, 2004.


	Study of the 1D lattice Boltzmann shallow water equation and its  coupling to build a canal network
	Introduction
	The shallow water equation
	Governing equations
	Lattice Boltzmann model
	Chapman–Enskog expansion

	Analysis of the steady state with zero flow
	Zhou’s expression for the force term
	Mass and momentum balance equation

	Guo’s force model
	The constant force model

	The linearized model
	Linearization of the shallow water equation
	Linearization of the LB equations
	Numerical analysis of the eigenvalue problem
	Numerical stability

	Benchmark
	Simulation setup
	Preissmann implicit scheme
	Finite volume method
	LB method
	Simulation

	Coupling experiments
	Coupling relations
	Connection through a gate
	Connection by a pumping station
	Connection through a spillway
	Branching canal
	Connection through a mixed structure

	Simulation example

	Conclusions
	Acknowledgment
	References


